Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Aging ; 5: 1378351, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38651031

RESUMO

Human ageing, along with the ageing of conventional model organisms, is depicted as a continuous and progressive decline of biological capabilities accompanied by an exponentially increasing mortality risk. However, not all organisms experience ageing identically and our understanding of the phenomenon is coloured by human-centric views. Ageing is multifaceted and influences a diverse range of species in varying ways. Some undergo swift declines post-reproduction, while others exhibit insubstantial changes throughout their existence. This vast array renders defining universally applicable "ageing attributes" a daunting task. It is nonetheless essential to recognize that not all ageing features are organism-specific. These common attributes have paved the way for identifying "hallmarks of ageing," processes that are intertwined with age, amplified during accelerated ageing, and manipulations of which can potentially modulate or even reverse the ageing process. Yet, a glaring observation is that individuals within a single population age at varying rates. To address this, demographers have coined the term 'frailty'. Concurrently, scientific advancements have ushered in the era of molecular clocks. These innovations enable a distinction between an individual's chronological age (time since birth) and biological age (physiological status and mortality risk). In 2011, the "Smurf" phenotype was unveiled in Drosophila, delineating an age-linked escalation in intestinal permeability that presages imminent mortality. It not only acts as a predictor of natural death but identifies individuals exhibiting traits normally described as age-related. Subsequent studies have revealed the phenotype in organisms like nematodes, zebrafish, and mice, invariably acting as a death predictor. Collectively, these findings have steered our conception of ageing towards a framework where ageing is not linear and continuous but marked by two distinct, necessary phases, discernible in vivo, courtesy of the Smurf phenotype. This framework includes a mathematical enunciation of longevity trends based on three experimentally measurable parameters. It facilitates a fresh perspective on the evolution of ageing as a function. In this article, we aim to delineate and explore the foundational principles of this innovative framework, emphasising its potential to reshape our understanding of ageing, challenge its conventional definitions, and recalibrate our comprehension of its evolutionary trajectory.

2.
Aging Cell ; 22(11): e13946, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37822253

RESUMO

Ageing is characterised at the molecular level by six transcriptional 'hallmarks of ageing', that are commonly described as progressively affected as time passes. By contrast, the 'Smurf' assay separates high-and-constant-mortality risk individuals from healthy, zero-mortality risk individuals, based on increased intestinal permeability. Performing whole body total RNA sequencing, we found that Smurfness distinguishes transcriptional changes associated with chronological age from those associated with biological age. We show that transcriptional heterogeneity increases with chronological age in non-Smurf individuals preceding the other five hallmarks of ageing that are specifically associated with the Smurf state. Using this approach, we also devise targeted pro-longevity genetic interventions delaying entry in the Smurf state. We anticipate that increased attention to the evolutionary conserved Smurf phenotype will bring about significant advances in our understanding of the mechanisms of ageing.


Assuntos
Envelhecimento , Longevidade , Humanos , Envelhecimento/genética , Longevidade/genética , Fenótipo , Evolução Biológica
3.
Antioxid Redox Signal ; 37(4-6): 349-369, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35166124

RESUMO

Aims: Although prebiotics, probiotics, and fecal transplantation can alter the sensation of hunger and/or feeding behavior, the role of the constitutive gut microbiota in the short-term regulation of food intake during normal physiology is still unclear. Results: An antibiotic-induced microbiota depletion study was designed to compare feeding behavior in conventional and microbiota-depleted mice. Tissues were sampled to characterize the time profile of microbiota-derived signals in mice during consumption of either standard or high-fat food for 1 h. Pharmacological and genetic tools were used to evaluate the contribution of postprandial endotoxemia and inflammatory responses in the short-term regulation of food intake. We observed constitutive microbial and macronutrient-dependent control of food intake at the time scale of a meal; that is, within 1 h of food introduction. Specifically, microbiota depletion increased food intake, and the microbiota-derived anorectic effect became significant during the consumption of high-fat but not standard food. This anorectic effect correlated with a specific postprandial microbial metabolic signature, and did not require postprandial endotoxemia or an NOD-, LRR-, and Pyrin domain-containing protein 3-inflammasome-mediated inflammatory response. Innovation and Conclusion: These findings show that the gut microbiota controls host appetite at the time scale of a meal under normal physiology. Interestingly, a microbiota-derived anorectic effect develops specifically with a high-fat meal, indicating that gut microbiota activity is involved in the satietogenic properties of foods. Antioxid. Redox Signal. 37, 349-369.


Assuntos
Depressores do Apetite , Endotoxemia , Microbiota , Animais , Ingestão de Alimentos , Peptídeo 1 Semelhante ao Glucagon , Inflamação , Camundongos , Camundongos Endogâmicos NOD , Estresse Oxidativo
4.
Nutrients ; 15(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36615854

RESUMO

The objective of this study is to evaluate the effects of a strictly essential amino acid (lysine or threonine; EAA) deficiency on energy metabolism in growing rats. Rats were fed for three weeks severely (15% and 25% of recommendation), moderately (40% and 60%), and adequate (75% and 100%) lysine or threonine-deficient diets. Food intake and body weight were measured daily and indirect calorimetry was performed the week three. At the end of the experimentation, body composition, gene expression, and biochemical analysis were performed. Lysine and threonine deficiency induced a lower body weight gain and an increase in relative food intake. Lysine or threonine deficiency induced liver FGF21 synthesis and plasma release. However, no changes in energy expenditure were observed for lysine deficiency, unlike threonine deficiency, which leads to a decrease in total and resting energy expenditure. Interestingly, threonine severe deficiency, but not lysine deficiency, increase orexigenic and decreases anorexigenic hypothalamic neuropeptides expression, which could explain the higher food intake. Our results show that the deficiency in one EAA, induces a decrease in body weight gain, despite an increased relative food intake, without any increase in energy expenditure despite an induction of FGF21.


Assuntos
Lisina , Treonina , Ratos , Animais , Peso Corporal , Aumento de Peso , Metabolismo Energético , Ingestão de Alimentos/fisiologia
5.
Glia ; 69(1): 42-60, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32659044

RESUMO

In humans, obesity is associated with brain inflammation, glial reactivity, and immune cells infiltration. Studies in rodents have shown that glial reactivity occurs within 24 hr of high-fat diet (HFD) consumption, long before obesity development, and takes place mainly in the hypothalamus (HT), a crucial brain structure for controlling body weight. Here, we sought to characterize the postprandial HT inflammatory response to 1, 3, and 6 hr of exposure to either a standard diet (SD) or HFD. HFD exposure increased gene expression of astrocyte and microglial markers (glial fibrillary acidic protein [GFAP] and Iba1, respectively) compared to SD-treated mice and induced morphological modifications of microglial cells in HT. This remodeling was associated with higher expression of inflammatory genes and differential regulation of hypothalamic neuropeptides involved in energy balance regulation. DREADD and PLX5622 technologies, used to modulate GFAP-positive or microglial cells activity, respectively, showed that both glial cell types are involved in hypothalamic postprandial inflammation, with their own specific kinetics and reactiveness to ingested foods. Thus, recurrent exacerbated postprandial inflammation in the brain might promote obesity and needs to be characterized to address this worldwide crisis.


Assuntos
Gorduras na Dieta , Microglia , Animais , Dieta Hiperlipídica/efeitos adversos , Proteína Glial Fibrilar Ácida , Hipotálamo , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade
6.
Cell Rep ; 30(9): 3067-3078.e5, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32130907

RESUMO

Mechanistic studies in rodents evidenced synaptic remodeling in neuronal circuits that control food intake. However, the physiological relevance of this process is not well defined. Here, we show that the firing activity of anorexigenic POMC neurons located in the hypothalamus is increased after a standard meal. Postprandial hyperactivity of POMC neurons relies on synaptic plasticity that engages pre-synaptic mechanisms, which does not involve structural remodeling of synapses but retraction of glial coverage. These functional and morphological neuroglial changes are triggered by postprandial hyperglycemia. Chemogenetically induced glial retraction on POMC neurons is sufficient to increase POMC activity and modify meal patterns. These findings indicate that synaptic plasticity within the melanocortin system happens at the timescale of meals and likely contributes to short-term control of food intake. Interestingly, these effects are lost with a high-fat meal, suggesting that neuroglial plasticity of POMC neurons is involved in the satietogenic properties of foods.


Assuntos
Hiperglicemia/fisiopatologia , Hipotálamo/metabolismo , Refeições , Neuroglia/patologia , Plasticidade Neuronal , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Animais , Glicemia/metabolismo , Fenômenos Eletrofisiológicos , Comportamento Alimentar , Hiperglicemia/sangue , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Período Pós-Prandial , Sinapses/metabolismo
7.
Cell Metab ; 28(4): 619-630.e5, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30146485

RESUMO

To meet the challenge to human health posed by obesity, a better understanding of the regulation of feeding is essential. Medications targeting 5-hydroxytryptamine (5-HT; serotonin) 2C receptors (htr2c; 5-HT2CR) improve obesity. Here we probed the functional significance of 5-HT2CRs specifically within the brainstem nucleus of the solitary tract (5-HT2CRNTS) in feeding behavior. Selective activation of 5-HT2CRNTS decreased feeding and was sufficient to mediate acute food intake reductions elicited by the 5-HT2CR agonist obesity medication lorcaserin. Similar to pro-opiomelanocortin neurons expressed within the hypothalamic arcuate nucleus (POMCARC), a subset of POMCNTS neurons co-expressed 5-HT2CRs and were activated by 5-HT2CR agonists. Knockdown of POMCNTS prevented the acute appetite-suppressive effect of lorcaserin, whereas POMCARC knockdown prevented the full anorectic effect. These data identify 5-HT2CRNTS as a sufficient subpopulation of 5-HT2CRs in reducing food intake when activated and reveal that 5-HT2CR agonist obesity medications require POMC within the NTS and ARC to reduce food intake.


Assuntos
Depressores do Apetite/uso terapêutico , Benzazepinas/uso terapêutico , Ingestão de Alimentos/fisiologia , Obesidade/tratamento farmacológico , Agonistas do Receptor 5-HT2 de Serotonina/uso terapêutico , Núcleo Solitário/metabolismo , Análise de Variância , Animais , Depressores do Apetite/metabolismo , Regulação do Apetite/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/citologia , Benzazepinas/metabolismo , Linhagem Celular Tumoral , Comportamento Alimentar/fisiologia , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Receptor 5-HT2C de Serotonina/metabolismo , Agonistas do Receptor 5-HT2 de Serotonina/metabolismo , Estatísticas não Paramétricas , Transfecção
8.
Artigo em Inglês | MEDLINE | ID: mdl-28855891

RESUMO

The hypothalamus is a key brain region in the regulation of energy balance as it controls food intake and both energy storage and expenditure through integration of humoral, neural, and nutrient-related signals and cues. Many years of research have focused on the regulation of energy balance by hypothalamic neurons, but the most recent findings suggest that neurons and glial cells, such as microglia and astrocytes, in the hypothalamus actually orchestrate together several metabolic functions. Because glial cells have been described as mediators of inflammatory processes in the brain, the existence of a causal link between hypothalamic inflammation and the deregulations of feeding behavior, leading to involuntary weight loss or obesity for example, has been suggested. Several inflammatory pathways that could impair the hypothalamic control of energy balance have been studied over the years such as, among others, toll-like receptors and canonical cytokines. Yet, less studied so far, chemokines also represent interesting candidates that could link the aforementioned pathways and the activity of hypothalamic neurons. Indeed, chemokines, in addition to their role in attracting immune cells to the inflamed site, have been suggested to be capable of neuromodulation. Thus, they could disrupt cellular activity together with synthesis and/or secretion of multiple neurotransmitters/mediators involved in the maintenance of energy balance. This review discusses the different inflammatory pathways that have been identified so far in the hypothalamus in the context of feeding behavior and body weight control impairments, with a particular focus on chemokines signaling that opens a new avenue in the understanding of the major role played by inflammation in obesity.

10.
EMBO Rep ; 17(12): 1738-1752, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27733491

RESUMO

Sickness behavior defines the endocrine, autonomic, behavioral, and metabolic responses associated with infection. While inflammatory responses were suggested to be instrumental in the loss of appetite and body weight, the molecular underpinning remains unknown. Here, we show that systemic or central lipopolysaccharide (LPS) injection results in specific hypothalamic changes characterized by a precocious increase in the chemokine ligand 2 (CCL2) followed by an increase in pro-inflammatory cytokines and a decrease in the orexigenic neuropeptide melanin-concentrating hormone (MCH). We therefore hypothesized that CCL2 could be the central relay for the loss in body weight induced by the inflammatory signal LPS. We find that central delivery of CCL2 promotes neuroinflammation and the decrease in MCH and body weight. MCH neurons express CCL2 receptor and respond to CCL2 by decreasing both electrical activity and MCH release. Pharmacological or genetic inhibition of CCL2 signaling opposes the response to LPS at both molecular and physiologic levels. We conclude that CCL2 signaling onto MCH neurons represents a core mechanism that relays peripheral inflammation to sickness behavior.


Assuntos
Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Hormônios Hipotalâmicos/metabolismo , Hipotálamo/metabolismo , Inflamação/metabolismo , Melaninas/metabolismo , Neurônios/metabolismo , Hormônios Hipofisários/metabolismo , Transdução de Sinais , Animais , Quimiocina CCL2/deficiência , Quimiocina CCL2/imunologia , Citocinas/biossíntese , Citocinas/genética , Citocinas/imunologia , Hormônios Hipotalâmicos/genética , Hormônios Hipotalâmicos/imunologia , Comportamento de Doença , Lipopolissacarídeos/imunologia , Melaninas/genética , Melaninas/imunologia , Camundongos , Neurônios/imunologia , Hormônios Hipofisários/genética , Hormônios Hipofisários/imunologia , Receptores CCR2/metabolismo , Redução de Peso
11.
Cell Metab ; 23(5): 821-36, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27133129

RESUMO

Despite significant advances in our understanding of the biology determining systemic energy homeostasis, the treatment of obesity remains a medical challenge. Activation of AMP-activated protein kinase (AMPK) has been proposed as an attractive strategy for the treatment of obesity and its complications. AMPK is a conserved, ubiquitously expressed, heterotrimeric serine/threonine kinase whose short-term activation has multiple beneficial metabolic effects. Whether these translate into long-term benefits for obesity and its complications is unknown. Here, we observe that mice with chronic AMPK activation, resulting from mutation of the AMPK γ2 subunit, exhibit ghrelin signaling-dependent hyperphagia, obesity, and impaired pancreatic islet insulin secretion. Humans bearing the homologous mutation manifest a congruent phenotype. Our studies highlight that long-term AMPK activation throughout all tissues can have adverse metabolic consequences, with implications for pharmacological strategies seeking to chronically activate AMPK systemically to treat metabolic disease.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Células Secretoras de Insulina/enzimologia , Células Secretoras de Insulina/patologia , Obesidade/enzimologia , Adiposidade/genética , Adulto , Envelhecimento/patologia , Proteína Relacionada com Agouti/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Metabolismo Energético/genética , Ativação Enzimática , Comportamento Alimentar , Feminino , Heterozigoto , Humanos , Hiperfagia/complicações , Hiperfagia/enzimologia , Hiperfagia/genética , Hiperfagia/patologia , Hipotálamo/metabolismo , Insulina/metabolismo , Masculino , Camundongos , Mitocôndrias/metabolismo , Mutação/genética , Neurônios/metabolismo , Obesidade/sangue , Obesidade/complicações , Obesidade/patologia , Fosforilação Oxidativa , Receptores de Grelina/metabolismo , Ribossomos/metabolismo , Transdução de Sinais/genética , Transcriptoma/genética , Regulação para Cima/genética
12.
Mol Metab ; 5(3): 245-252, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26977396

RESUMO

OBJECTIVE: Obesity is one of the primary healthcare challenges of the 21st century. Signals relaying information regarding energy needs are integrated within the brain to influence body weight. Central among these integration nodes are the brain pro-opiomelanocortin (POMC) peptides, perturbations of which disrupt energy balance and promote severe obesity. However, POMC neurons are neurochemically diverse and the crucial source of POMC peptides that regulate energy homeostasis and body weight remains to be fully clarified. METHODS: Given that a 5-hydroxytryptamine 2c receptor (5-HT2CR) agonist is a current obesity medication and 5-HT2CR agonist's effects on appetite are primarily mediated via POMC neurons, we hypothesized that a critical source of POMC regulating food intake and body weight is specifically synthesized in cells containing 5-HT2CRs. To exclusively manipulate Pomc synthesis only within 5-HT2CR containing cells, we generated a novel 5-HT 2C R (CRE) mouse line and intercrossed it with Cre recombinase-dependent and hypothalamic specific reactivatable Pomc (NEO) mice to restrict Pomc synthesis to the subset of hypothalamic cells containing 5-HT2CRs. This provided a means to clarify the specific contribution of a defined subgroup of POMC peptides in energy balance and body weight. RESULTS: Here we transform genetically programed obese and hyperinsulinemic male mice lacking hypothalamic Pomc with increased appetite, reduced physical activity and compromised brown adipose tissue (BAT) into lean, healthy mice via targeted restoration of Pomc function only within 5-HT2CR expressing cells. Remarkably, the same metabolic transformation does not occur in females, who despite corrected feeding behavior and normalized insulin levels remain physically inactive, have lower energy expenditure, compromised BAT and develop obesity. CONCLUSIONS: These data provide support for the functional heterogeneity of hypothalamic POMC neurons, revealing that Pomc expression within 5-HT2CR expressing neurons is sufficient to regulate energy intake and insulin sensitivity in male and female mice. However, an unexpected sex difference in the function of this subset of POMC neurons was identified with regard to energy expenditure. We reveal that a large sex difference in physical activity, energy expenditure and the development of obesity is driven by this subpopulation, which constitutes approximately 40% of all POMC neurons in the hypothalamic arcuate nucleus. This may have broad implications for strategies utilized to combat obesity, which at present largely ignore the sex of the obese individual.

13.
Curr Opin Behav Sci ; 9: 126-135, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28191490

RESUMO

The reinforcing and motivational aspects of food are tied to the release of the dopamine in the mesolimbic system (ML). Free fatty acids from triglyceride (TG)-rich particles are released upon action of TG-lipases found at high levels in peripheral oxidative tissue (muscle, heart), but also in the ML. This suggests that local TG-hydrolysis in the ML might regulate food seeking and reward. Indeed, evidence now suggests that dietary TG directly target the ML to regulate amphetamine-induced locomotion and reward seeking behavior. Though the cellular mechanisms of TG action are unresolved, TG act in part through ML lipoprotein lipase, upstream of dopamine 2 receptor (D2R), and show desensitization in conditions of chronically elevated plasma TG as occur in obesity. TG sensing in the ML therefore represents a new mechanism by which chronic consumption of dietary fat might lead to adaptations in the ML and dysregulated feeding behaviors.

14.
Biochimie ; 120: 75-80, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26159487

RESUMO

In both developed and emerging countries, sedentary life style and over exposition to high energy dense foods has led to a thermodynamic imbalance and consequently obesity. Obesity often involves a behavioural component in which, similar to drugs abuse, compulsive consumption of palatable food rich in lipids and sugar drives energy intake far beyond metabolic demands. The hypothalamus is one of the primary integration sites of circulating energy-related signals like leptin or ghrelin and is therefore considered as one of the main central regulators of energy balance. However, food intake is also modulated by sensory inputs, such as tastes and odours, as well as by affective or emotional states. The mesolimbic pathway is well established as a key actor of the rewarding aspect of feeding. Particularly, the hedonic and motivational aspects of food are closely tied to the release of the neurotransmitter dopamine (DA) in striatal structure such as the Nucleus Accumbens (Nacc). In both rodent and humans several studies shows an attenuated activity of dopaminergic signal associated with obesity and there is evidence that consumption of palatable food per se leads to DA signalling alterations. Furthermore impaired cognition in obese mice is improved by selectively lowering triglycerides (TG) and intracerebroventricular administration of TG induces by itself acquisition impairment in several cognitive paradigms in normal body weight mice. Together, these observations raise the possibility that nutritional lipids, particularly TG, directly affect cognitive and reward processes by modulating the mesolimbic pathway and might contribute to the downward spiral of compulsive consumption of palatable food and obesity. This review is an attempt to capture recent evolution in the field that might point toward a direct action of nutritional lipid in the reward circuitry.


Assuntos
Gorduras na Dieta/efeitos adversos , Ingestão de Alimentos/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Hipotálamo/metabolismo , Obesidade , Triglicerídeos/uso terapêutico , Animais , Gorduras na Dieta/farmacologia , Emoções/efeitos dos fármacos , Humanos , Camundongos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Obesidade/patologia
15.
Cell Metab ; 22(4): 646-57, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26278050

RESUMO

Feeding behavior is exquisitely regulated by homeostatic and hedonic neural substrates that integrate energy demand as well as the reinforcing and rewarding aspects of food. Understanding the net contribution of homeostatic and reward-driven feeding has become critical because of the ubiquitous source of energy-dense foods and the consequent obesity epidemic. Hypothalamic agouti-related peptide-secreting neurons (AgRP neurons) provide the primary orexigenic drive of homeostatic feeding. Using models of neuronal inhibition or ablation, we demonstrate that the feeding response to a fast ghrelin or serotonin receptor agonist relies on AgRP neurons. However, when palatable food is provided, AgRP neurons are dispensable for an appropriate feeding response. In addition, AgRP-ablated mice present exacerbated stress-induced anorexia and palatable food intake--a hallmark of comfort feeding. These results suggest that, when AgRP neuron activity is impaired, neural circuits sensitive to emotion and stress are engaged and modulated by food palatability and dopamine signaling.


Assuntos
Proteína Relacionada com Agouti/genética , Neurônios/metabolismo , Proteína Relacionada com Agouti/deficiência , Animais , Dopamina/metabolismo , Ingestão de Alimentos , Hipotálamo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Transdução de Sinais
16.
Med Sci (Paris) ; 31(4): 397-403, 2015 Apr.
Artigo em Francês | MEDLINE | ID: mdl-25958758

RESUMO

Fatty acid sensitive neurons located in hypothalamus, hippocampus or striatum are able to detect daily variations of plasma fatty acid levels. Thus, these neurons play a role to regulate energy balance by controling food intake, insulin secretion or hepatic glucose production. Molecular mechanisms that mediate fatty acid effects include receptor FAT (fatty acid transporter)/CD36. Deregulation of this brain lipid sensing may be an early event leading to further dysfunction of energy balance leading to obesity and type 2 diabetes.


Assuntos
Encéfalo/metabolismo , Metabolismo Energético , Metabolismo dos Lipídeos/fisiologia , Animais , Ácidos Graxos/metabolismo , Humanos , Hipotálamo/metabolismo , Neurônios/metabolismo , Neurotransmissores/metabolismo , Receptores de Neurotransmissores/metabolismo
17.
Best Pract Res Clin Endocrinol Metab ; 28(5): 725-37, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25256767

RESUMO

The arcuate nucleus (ARC) of the hypothalamus is particularly regarded as a critical platform that integrates circulating signals of hunger and satiety reflecting energy stores and nutrient availability. Among ARC neurons, pro-opiomelanocortin (POMC) and agouti-related protein and neuropeptide Y (NPY/AgRP neurons) are considered as two opposing branches of the melanocortin signaling pathway. Integration of circulating signals of hunger and satiety results in the release of the melanocortin receptor ligand α-melanocyte-stimulating hormone (αMSH) by the POMC neurons system and decreases feeding and increases energy expenditure. The orexigenic/anabolic action of NPY/AgRP neurons is believed to rely essentially on their inhibitory input onto POMC neurons and second-orders targets. Recent updates in the field have casted a new light on the role of the ARC neurons in the coordinated regulation of peripheral organs involved in the control of nutrient storage, transformation and substrate utilization independent of food intake.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Ingestão de Alimentos/fisiologia , Metabolismo Energético/fisiologia , Neurônios/metabolismo , Proteína Relacionada com Agouti/metabolismo , Animais , Homeostase/fisiologia , Humanos , Neuropeptídeo Y/metabolismo , Pró-Opiomelanocortina/metabolismo , alfa-MSH/metabolismo
18.
Front Behav Neurosci ; 8: 35, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24574986

RESUMO

The meso-cortico-limbic system, via dopamine release, encodes the rewarding and reinforcing properties of natural rewards. It is also activated in response to abused substances and is believed to support drug-related behaviors. Dysfunctions of this system lead to several psychiatric conditions including feeding disorders and drug addiction. These disorders are also largely influenced by environmental factors and in particular stress exposure. Stressors activate the corticotrope axis ultimately leading to glucocorticoid hormone (GCs) release. GCs bind the glucocorticoid receptor (GR) a transcription factor ubiquitously expressed including within the meso-cortico-limbic tract. While GR within dopamine-innervated areas drives cocaine's behavioral responses, its implication in responses to other psychostimulants such as amphetamine has never been clearly established. Moreover, while extensive work has been made to uncover the role of this receptor in addicted behaviors, its contribution to the rewarding and reinforcing properties of food has yet to be investigated. Using mouse models carrying GR gene inactivation in either dopamine neurons or in dopamine-innervated areas, we found that GR in dopamine responsive neurons is essential to properly build amphetamine-induced conditioned place preference and locomotor sensitization. c-Fos quantification in the nucleus accumbens further confirmed defective neuronal activation following amphetamine injection. These diminished neuronal and behavioral responses to amphetamine may involve alterations in glutamate transmission as suggested by the decreased MK801-elicited hyperlocomotion and by the hyporeactivity to glutamate of a subpopulation of medium spiny neurons. In contrast, GR inactivation did not affect rewarding and reinforcing properties of food suggesting that responding for natural reward under basal conditions is preserved in these mice.

19.
Front Physiol ; 3: 385, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23060810

RESUMO

Lipids are essential components of a living organism as energy source but also as constituent of the membrane lipid bilayer. In addition fatty acid (FA) derivatives interact with many signaling pathways. FAs have amphipathic properties and therefore require being associated to protein for both transport and intracellular trafficking. Here we will focus on several FA handling proteins, among which the fatty acid translocase/CD36 (FAT/CD36), members of fatty acid transport proteins (FATPs), and lipid chaperones fatty acid-binding proteins (FABPs). A decade of extensive studies has helped decipher the mechanism of action of these proteins in peripheral tissue with high lipid metabolism. However, considerably less information is available regarding their role in the brain, despite the high lipid content of this tissue. This review will primarily focus on the recent studies that have highlighted the crucial role of lipid handling proteins in brain FA transport, neuronal differentiation and development, cognitive processes and brain diseases. Finally a special focus will be made on the recent studies that have revealed the role of FAT/CD36 in brain lipid sensing and nervous control of energy balance.

20.
EMBO J ; 31(22): 4276-88, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-22990237

RESUMO

Obesity-related diseases such as diabetes and dyslipidemia result from metabolic alterations including the defective conversion, storage and utilization of nutrients, but the central mechanisms that regulate this process of nutrient partitioning remain elusive. As positive regulators of feeding behaviour, agouti-related protein (AgRP) producing neurons are indispensible for the hypothalamic integration of energy balance. Here, we demonstrate a role for AgRP-neurons in the control of nutrient partitioning. We report that ablation of AgRP-neurons leads to a change in autonomic output onto liver, muscle and pancreas affecting the relative balance between lipids and carbohydrates metabolism. As a consequence, mice lacking AgRP-neurons become obese and hyperinsulinemic on regular chow but display reduced body weight gain and paradoxical improvement in glucose tolerance on high-fat diet. These results provide a direct demonstration of a role for AgRP-neurons in the coordination of efferent organ activity and nutrient partitioning, providing a mechanistic link between obesity and obesity-related disorders.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Hipotálamo/metabolismo , Animais , Metabolismo dos Carboidratos/fisiologia , Ingestão de Alimentos/fisiologia , Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Masculino , Camundongos , Músculo Esquelético/metabolismo , Neurônios/metabolismo , Obesidade/metabolismo , Pâncreas/metabolismo , Aumento de Peso/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...